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Summary

� Head blight caused by Fusarium graminearum threatens world-wide wheat production,

resulting in both yield loss and mycotoxin contamination.
� We reconstructed the global F. graminearum gene regulatory network (GRN) from a large

collection of transcriptomic data using Bayesian network inference, a machine-learning algo-

rithm. This GRN reveals connectivity between key regulators and their target genes. Focusing

on key regulators, this network contains eight distinct but interwoven modules. Enriched for

unique functions, such as cell cycle, DNA replication, transcription, translation and stress

responses, each module exhibits distinct expression profiles.
� Evolutionarily, the F. graminearum genome can be divided into core regions shared with

closely related species and variable regions harboring genes that are unique to

F. graminearum and perform species-specific functions. Interestingly, the inferred top regula-

tors regulate genes that are significantly enriched from the same genomic regions (P < 0.05),

revealing a compartmentalized network structure that may reflect network rewiring related to

specific adaptation of this plant pathogen.
� This first-ever reconstructed filamentous fungal GRN primes our understanding of

pathogenicity at the systems biology level and provides enticing prospects for novel disease

control strategies involving the targeting of master regulators in pathogens. The program can

be used to construct GRNs of other plant pathogens.

Introduction

Fusarium head blight (FHB), caused by the filamentous
ascomycete Fusarium graminearum (F. graminearum), is one of
the most devastating diseases in wheat (Triticum aestivum), barley
(Hordeum vulgare) and other small grains around the world
(Goswami & Kistler, 2004; Leslie & Summerell, 2006; Rep &
Kistler, 2010; Guo & Ma, 2014). FHB results in yield loss and
contamination of grains with mycotoxins (Leslie & Summerell,
2006), fungal secondary metabolites toxic to animals, including
humans. The management of FHB remains challenging because
of a lack of effective resistant wheat cultivars and the prevalence
of pathogen resistance to fungicides. The understanding of
F. graminearum pathobiology at the systems level is vital to effec-
tive disease and mycotoxin management.

From a systems biology perspective, any biological process,
such as growth, reproduction or host invasion, is accomplished
by genome-encoded molecular components that are orches-
trated and assembled into interconnected cell circuits (Kim
et al., 2009). A gene regulatory network (GRN) depicts the
relationships between regulatory components (e.g. kinases and
transcription factors (TFs)) and their target genes (e.g. enzymes

and structural proteins), key components of cell circuits.
Among fungal species, GRN studies have extensively focused
on yeasts, such as Saccharomyces cerevisiae (Pe’er et al., 2001,
2002; Guelzim et al., 2002; Lee et al., 2002; Segal et al., 2003;
Nachman et al., 2004; Kim et al., 2006; Hu et al., 2007; Dara-
bos et al., 2011) and Candida albicans (Homann et al., 2009;
Ramachandra et al., 2014). By contrast, the reconstruction of
GRN for filamentous fungi remains in its infancy. The best
understood F. graminearum transcriptional regulation system is
the Tri gene cluster, which is modulated by two internal TFs,
Tri6 and Tri10 (Seong et al., 2009; Nasmith et al., 2011), and
directs the biosynthesis of trichothecene mycotoxins (Goswami
& Kistler, 2004; Rep & Kistler, 2010). A chromatin immuno-
precipitation sequencing (ChIP-seq) analysis (Nasmith et al.,
2011) revealed that Tri6 physically binds to the promoter
sequences of six Tri genes and 192 non-Tri genes by recogniz-
ing the ‘TNAGGCC’ motif (Nasmith et al., 2011). It remains
to be determined how cellular components work systemically
to regulate F. graminearum development, invasive growth and
virulence.

There are rich resources to facilitate such an endeavor. The
F. graminearum genome has been fully sequenced (Cuomo et al.,
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2007) and putative regulatory proteins have been comprehen-
sively annotated (Guldener et al., 2006a; Park et al., 2008, 2011;
Wong et al., 2011). In addition to the Tri cluster, over 100
pathogenicity-related genes have been characterized, including
signal proteins (SPs), such as G proteins (Yu et al., 2008), small
GTPases (Bluhm et al., 2007) and mitogen-activated protein
kinases (MAPKs) (Urban et al., 2003; Jenczmionka & Schafer,
2005). Genome-wide functional studies of F. graminearum TFs
(Son et al., 2011) and protein kinases (PKs) (Li et al., 2011) have
linked 170 TFs and 64 PKs to fungal growth, development and
virulence. An F. graminearum protein–protein interactome
database (FPPI) has been constructed (Zhao et al., 2009). Fur-
thermore, over 100 transcriptome datasets, covering diverse bio-
logical states, such as plant infection (Boddu et al., 2006;
Guldener et al., 2006b; Lysoe et al., 2011), sexual development
(Qi et al., 2006; Hallen et al., 2007; Lee et al., 2010; Sikhakolli
et al., 2012), conidial germination (Seong et al., 2008) and myco-
toxin production (Gardiner et al., 2009; Seong et al., 2009;
Jonkers et al., 2012), are available in the PLEXdb public database
(Dash et al., 2012) (http://www.plexdb.org). Large collections of
expression profiles, either generated in our research or obtained
from PLEXdb, established a foundation for the systemic infer-
ence of the F. graminearum GRN.

Many sophisticated computational programs, including Gaus-
sian graphical models (Kishino & Waddell, 2000; Schafer &
Strimmer, 2005a,b), probabilistic Boolean networks (Kauffman,
1969; Glass & Kauffman, 1973; Shmulevich et al., 2002) and
Bayesian networks (BNs) (Friedman et al., 2000; Pe’er et al.,
2002; Segal et al., 2003), have been developed for GRN recon-
struction. This study adopted MINREG (Pe’er et al., 2002), a scal-
able BN model that defines regulatory relationships using
expression data, and has been successfully used to reconstruct
yeast (Pe’er et al., 2002) and mammalian (Amit et al., 2009)
GRNs. A probabilistic graphical model, BN combines multivari-
ate probability distributions and captures the properties of condi-
tional independence between variables. Because of its ability to
describe complex stochastic processes and to provide clear
methodologies for learning from noisy observations, BN has
emerged as a common and attractive model for the reconstruc-
tion of GRNs from expression data (Friedman et al., 2000;
Vignes et al., 2011).

Here, we report the first genome-wide F. graminearum GRN
by harnessing available genomic, transcriptomic and functional
data. Remarkably, the predicted regulators were functionally cor-
related with target genes. Topologically, the GRN was divided
into eight distinct functional modules that were differentially reg-
ulated under various biological conditions, in agreement with the
finding that each module performed distinct functions. Finally,
we provide evidence that the F. graminearum regulatory network
is compartmentalized in the core vs species-specific genomic
regions, providing insight into the circuit rewiring that may con-
tribute to fungal genome evolution and specialization. Key com-
ponents of the GRN are promising candidates for devising novel
strategies to control this destructive disease. The computational
program used here is also suitable for network inference in a
broad spectrum of phytopathogenic fungi.

Materials and Methods

Strains

Fusarium graminearum Schwabe PH1 wild-type and mutants
(Supporting Information Table S1) were kindly provided by Dr
Jin-Rong Xu at Purdue University, and have been described pre-
viously (Wang et al., 2011).

RNA preparation, chip hybridization and analysis

For the 27 sets of microarray data generated in this study
(Table S1), total RNAs were isolated from fungal hyphae har-
vested from 36-h-old complete medium cultures with TRIzol®

Reagent (Invitrogen, Carlsbad, CA, USA), following the manu-
facturer’s recommendations. Microarray hybridization was per-
formed using the Affymetrix Fungal Multigenome ExonChip,
and data processing and analysis were conducted as described
previously (Guo et al., 2016). Three biological replicates were
conducted for each experiment. For data quality control, Pearson
correlation coefficients (r) were calculated, and scatterplots were
created for each possible pair of biological replicates (Fig. S1)
using the R package GGALLY.

Combined data and normalization

One-hundred and sixty-six F. graminearum microarray samples,
subjected to 55 experimental conditions (Table S1), were
obtained from PLEXDB. As these datasets were generated from
different sources, expression levels in all samples were calculated
uniformly from raw microarray data, as described previously
(Guo et al., 2016). The expression of each gene under each exper-
imental condition was classified into three discrete statuses: nor-
mal, upregulated and downregulated (Table S2). The normalized
data were used as input in our network inference program.

MINREG algorithm implementation

The MINREG algorithm, based on the BN model (Pe’er et al.,
2006), was adapted for our GRN inference. BN learning includes
two aspects: learning the parameters of the conditional probabil-
ity distribution for genes as nodes and learning the BN structure.
With thousands of gene nodes in a regulatory network, it is an
NP (nondeterministic polynomial time)-complete problem to
enumerate all possible network structures and optimize the
parameters. Under the assumption that only a certain number of
regulators regulate a target gene, the MINREG algorithm uses a
heuristic greedy strategy to add regulators, one by one, by select-
ing the regulator that can increase the BN score (BNS) the most.
If adding a new regulator does not significantly increase the over-
all BNS, the algorithm terminates. In our implementation, we
selected the candidate regulator with the highest BNS as a key
regulator in each iteration. The number of key regulators was
finalized based on the score distribution of BNS increase. Target
genes were assigned to respective regulators under the constraint
of a limited number of parents, which is denoted as d. For the
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first set of d regulators (parents for all target genes), all possible
combinations of d regulators from the candidates were enumer-
ated to select the combination that gave the highest BNS. Then,
for a new regulator to be added, the parents of each target gene
were combined to select the combinations of d regulators that
gave the highest BNS. After summing all the BNSs, the candidate
regulator that gave the highest score increase was added to the
network. When selecting the (k + 1)th regulator, if the slope of
the score increase was less than the threshold, the program
stopped and selected the k regulators as the final parents of the
target genes. The source codes and detailed instructions for
searching the F. graminearum GRN can be accessed at: http://
rio.ecs.umass.edu/Fusarium_GRN.

RGO score calculation

If regulators were SPs, functional enrichment using FUNCAT

(Ruepp et al., 2004) was performed on target genes of each SP
regulator to obtain significantly enriched terms with a P value
threshold of 0.05. The significantly enriched terms were com-
pared with functional terms of the SP regulator. The functional
capture rate RGO was then calculated by dividing the number of
shared functional terms by the total number of regulator func-
tional terms.

Permutation test

A permutation test was performed to compare the RGO scores of
our inferred regulatory network and the randomly generated reg-
ulator–target gene relationship. In each permutation, 120 regula-
tors were randomly selected from candidate regulators. Each
randomly selected regulator was mapped to the F. graminearum
network with a set of randomly selected target genes of the same
size. With the new random target genes, the RGO score for each
random regulator was calculated following a FUNCAT analysis.
After running permutation tests 100 times, the average distribu-
tion of the RGO score was compared with that of the inferred
network.

Function prediction of TFs

Predicted TF regulators were evaluated using two different
pipelines. First, the 75 F. graminearum TFs were searched
for homologs in the S. cerevisiae genome (http://www.
yeastgenome.org/) using BLASTP (e < 1e-10). For the identified
F. graminearum TF homologs, FUNCAT analysis was performed
for target genes and enriched functions were compared with
S. cerevisiae TF homolog functions to identify consensus
functions. Second, TF binding motif enrichment was performed
for target genes of each F. graminearum TF homolog using
degenerate TF binding motifs predicted previously (Kumar et al.,
2010). The enriched TF binding motif was then compared
with the binding motif in the S. cerevisiae TF homolog, if present
in the YeTFaSCo database (http://yetfasco.ccbr.utoronto.ca),
to identify similar binding motifs based on matching score
computation.

TF binding site matching score

Generally, the TF binding motif is represented as a position
weight matrix (PWM) or sequence logo. The motif matching
score function was derived to measure the distance between the
most enriched F. graminearum k-mer motif and the known
S. cerevisiae motif. The matching score for the most enriched
motif mg and the published S. cerevisiae motif my was calculated
in Eqn 1:

m-score ¼ max
1� t �m�n

Pn
i¼1 Mmg i½ �;iþtPn
i¼1 max

s2R
Ms;iþt

8<
:

9=
; Eqn 1

The PWM for S. cerevisiae motif my is represented as a fre-
quency matrix of Mk,j, where k is one of possible nucleotides
Σ = {A, C, G, T} and j is the position. The length of motif my is
denoted as m and the length of motif mg is denoted as n. The
nucleotide at position i of mg is denoted as mg[i]. When mg is
aligned with my at position t of my, the total matching score
equals the summation of frequency Mk,j at each aligned position.
The denominator is the normalization factor to remove the influ-
ence of the maximum frequency. From all the possible aligned
positions, the largest matching score is the m-score.

Modularity analysis

Regulatory modules in the F. graminearum GRN were identified
using the modularity function in GEPHI (Bastian et al., 2009)
employing randomization and a resolution score of 1.0. Genes of
each regulatory module were exported and functional enrichment
was conducted using FUNCAT. Gene expression levels of each
module were extracted from master data tables using inhouse
Python scripts, clustered and visualized using MEV (http://
www.tm4.org/mev.html).

GRN–FPPI overlapping network analysis

To identify overlapping elements between the FPPI network and
the GRN inferred in this study, genes and their interactions pre-
sent in both networks were captured using inhouse Python
scripts. FPPI network data were kindly provided by Professor
Weihua Tang at the Institute of Plant Physiology and Ecology of
the Chinese Academy of Sciences.

Statistical analysis

Statistical analyses, including Student’s t-test and Fisher’s exact
test, were conducted using the stats functions in the R program-
ming language (http://www.r-project.org). The F. graminearum
genome has been divided previously into core and species-specific
(FS) compartments containing c. 9700 and 3600 genes, respec-
tively (Ma et al., 2010). For the top-ranked 20 regulators for the
two compartments, we performed Fisher’s exact test using the
fisher.test function in R. Our data provide strong support for the
biased distribution of top regulators for both regions. Core
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regulators (19/20) are significantly enriched in the core genome
compared with random chance (9700/13 300) (P = 0.02281),
whereas FS regulators (1/20) are under-represented in the core
genome. Similarly, FS regulators (12/20) are significantly
enriched in the FS genome compared with random chance
(3600/13 300) (P = 0.002), whereas core regulators are signifi-
cantly under-represented in the FS genome.

Data access

Microarray data generated in this work using the Affymetrix Fun-
gal Multigenome ExonChip (Guo et al., 2016) are available at
the Filamentous Fungi Gene Expression Database (Zhang &
Townsend, 2010) (Experiment ID: 241, 242, 246 and 247)
(http://bioinfo.townsend.yale.edu/). The GRN inferred in this
work, as well as related datasets, source codes and instructions for
using the network, can be accessed at: http://rio.ecs.umass.edu/
Fusarium_GRN.

Results

Global F. graminearum GRN inference

In this study, we inferred the F. graminearum GRN by adapting
MINREG, a machine-learning algorithm based on a BN model
(Pe’er et al., 2002) which treats the expression level of each gene
as a random variable and attempts to estimate the structural fea-
tures of the dependences in their joint probability distribution
from the data. To collect sufficient expression data for reliable
network prediction, we generated 27 expression profiles based on
nine experiments (see the Materials and Methods section)
(Table S1) and acquired 166 transcriptomic datasets curated at
the Plant Expression database (PLEXdb) (Dash et al., 2012).
Expression data from both sources were combined and normal-
ized, generating a global gene expression data matrix as input data
(Table S2). A total of 968 candidate regulator genes, including
660 putative TFs and 308 SPs (Table S3), were identified based
on current functional annotations and published studies (Cuomo
et al., 2007; Wong et al., 2011). Overall, the global BNS
increased when a new regulator was added (Fig. S2). At the
beginning of the BNS distribution curve, there was a linear corre-
lation between the global BNS value and the increase in regula-
tors. The increase declined significantly after 120 regulators had
been added. Theoretically, each candidate regulator can be fitted
into the GRN; however, doing so is computationally costly and
creates statistical noise which probably leads to spurious depen-
dences with a relatively small sample size. Therefore, we termi-
nated our search with a parsimonious set of major regulators and
limited our search to a simple network structure in an effort to
balance the high resolution of the learned networks with statisti-
cal robustness (see the Materials and Methods section). We
defined these 120 regulators, which can be accessed at the website
http://rio.ecs.umass.edu/Fusarium_GRN, as top regulators of the
F. graminearum GRN (Fig. S3). The inferred top regulators
included 75 TFs and 45 SPs. The number of target genes for each
regulator ranged from 71 to 629, with an average of 329

(Fig. 1a). Because the expression data covered diverse biological
states with an emphasis on pathogenesis, we aimed to deliver a
reduced network structure that described the regulation of funda-
mental biological processes with an emphasis on the regulation of
fungal pathogenesis. This framework can be further fitted with
expression data under different perturbations to understand the
regulation of specific biological functions.

Validation of the predicted F. graminearum GRN

Top SP regulators share functions with their target genes Reg-
ulators and their target genes are usually involved in the same
biological processes (Pe’er et al., 2006). This is strongly sup-
ported by the top SP regulators identified in our study and the
enriched gene ontology (GO) terms of their target genes. For
example, 38 of the 45 inferred top SP regulators have been func-
tionally annotated, which enables a comparison of the GO terms
assigned to each regulator and its target genes using the ratio
score function RGO (see the Materials and Methods section). The
scores range from 0 to 1. A score of 1 reflects complete functional
overlap, as all GO terms assigned to a regulator are enriched in
the GO terms assigned to its target genes. By contrast, a score of
0 indicates a lack of functional overlap. Of the 38 annotated reg-
ulators, the average RGO score was 0.34, significantly higher than
the randomized permutation test average RGO score of 0.0051
(Student’s t-test, P = 0.00205). Specifically, the RGO score for the
regulator RAS2 (FGSG_10114) was 1, and six regulators had
RGO scores of ≥ 0.7, and about half of the SP regulators (18) had
RGO scores that were ≥ 0.4 (Fig. 1b; Table S4).

These top SP regulators, which act as controlling centers of the
GRN and regulate many key processes essential for survival and
proliferation, were found to be mostly involved in housekeeping
cell functions, such as metabolism, cell cycle control, cellular
transport, transcription, translation and cell growth (Table S4).
For example, RAS2 (FGSG_10114) was predicted to regulate
557 target genes in the F. graminearum GRN. Empirically, the
ras2 mutant showed multiple defects, including defects in vegeta-
tive growth, mating and virulence (Bluhm et al., 2007), even
though the mutant was viable. Interestingly, these 557 target
genes included 38 genes involved in the cell cycle, 41 in stress
responses and 34 in cell polarity and ascospore development.
Among the 45 SP regulators, at least three, that is, FGSG_00677
(subunit of casein kinase 2, CK2), FGSG_01137 (FgMPS1) and
FGSG_09660 (FgPKC1), are essential (Fig. S4), and no viable
knockout mutants could be experimentally obtained for these
(Wang et al., 2011). Mutants of the other eight regulators showed
phenotypic defects in one or more processes, including vegetative
growth, sporulation, toxin production and virulence (Wang
et al., 2011), supporting their involvement in essential cellular
functions as top regulators (Fig. S4).

Most predicted top TF regulators are functionally con-
served Unlike SPs, most TFs in the F. graminearum genome
have limited GO annotations associated with biological processes
and lack functional annotations other than nucleic acid binding.
Validation methods based on such incomplete information could
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amplify both false-positive and false-negative signals. Therefore,
we took a homologous-based approach, comparing the predicted
top regulators with homologs in the best-characterized model
fungal genome, S. cerevisiae. Among the 75 predicted top TF reg-
ulators, 56 had putative S. cerevisiae homologs (e < 1e-10). Trans-
ferring the functional annotation of yeast proteins to their
F. graminearum homologs enabled us to perform an annotation-
based validation similar to that described for SPs. Interestingly,
the functions of 34 of the 56 top TFs, as suggested by their yeast
homologs, were confirmed by the enriched functional categories
inferred by their target genes (see the Materials and Methods sec-
tion) (Fig. 2a; Table 1). These 34 conserved regulators regulate a
wide range of cellular processes, including the cell cycle, RNA
processing during transcription and translation, mitochondrial
functions, mating, stress responses and chromatin dynamics
(Table 1).

A comprehensive mutagenesis study generated and character-
ized all 660 TFs in the F. graminearum genome, showing that
170 TF deletion mutants have at least one phenotypic defect
(Son et al., 2011), including 13 of the 75 predicted top TF regu-
lators (Fig. S4). Interestingly, 10 of these 13 TFs were found to
be conserved in S. cerevisiae. For example, FGSG_07310 was
found to be the homolog of S. cerevisiae STE12, which is acti-
vated by the MAPK cascade in response to pheromones and con-
trols mating (Elion et al., 1993). The FGSG_07310 deletion
mutant is unable to reproduce sexually, confirming the essential
role of FGSG_07310 in mating (Son et al., 2011). Deletion
mutants of four of these TFs, FGSG_00324, FGSG_00385,
FGSG_00477 and FGSG_08719 (Fig. S4), had multiple defects
(Son et al., 2011), consistent with the fundamental biological
processes they share with their S. cerevisiae homologs, such as
transcription, and chromatin and cytoskeleton structure
(Table 1).

TFs control the transcription of their target genes by binding
to their respective regulatory sequences, called TFBSs, at the pro-
moter regions of the target genes. It has been reported repeatedly
that the sequence of a TFBS can be preserved in a conserved TF
over evolutionary distance, for instance from unicellular yeasts to
filamentous fungi (Kumar et al., 2010; Wittkopp & Kalay,

2012). Based on the set of computationally predicted TF cis ele-
ments in the F. graminearum genome (Kumar et al., 2010), we
identified the most enriched TF binding sites (Student’s t-test)
among target genes for each inferred top TF regulator (Table S5).
On average, about one-quarter of the predicted target genes of
each TF shared an enriched binding site. We further developed a
score function based on PWM to measure the sequence similarity
between the enriched F. graminearum binding motifs and the
corresponding ones predicted in the Yeast Transcription Factor
Specificity Compendium (see the Materials and Methods sec-
tion). The score ranges from 0 to 1, representing the least to the
most matches. Among the 34 functionally conserved
F. graminearum–S. cerevisiae TFs, 22 (65%) shared TF binding
sequences with S. cerevisiae homologs (Fig. 2a; Table 1). The con-
served binding motifs included the TFBS for MIG2, PUT3,
EDS1, STE12 and STB5, with matching scores of higher than
0.8 (Fig. 2b).

In summary, validation of the reduced F. graminearum GRN
confirms its reliability in depicting the relationship between top
regulators, both SPs and TFs, and their target genes. The conser-
vation between F. graminearum and S. cerevisiae for both the pre-
dicted top TFs and their TFBSs suggests that most predicted top
regulators in this reduced network structure perform conserved
housekeeping functions.

Modularity is a key feature of the F. graminearum GRN

The GRN usually contains interconnected functional modules
that have specific functions in biological processes (Segal et al.,
2003). Multiple software packages, such as GEPHI (Bastian et al.,
2009), were designed to extract tightly connected subnetworks
from larger networks (Blondel et al., 2008), including social net-
works such as Facebook (Akhtar et al., 2013), as well as transcrip-
tion regulatory networks (Sanz et al., 2011). Using GEPHI, the
F. graminearum GRN can be reproducibly divided into eight reg-
ulatory modules (Fig. 3). GO term enrichment tests (Table S6)
confirmed that each module was functionally independent and
was important for certain biological functions (Fig. 4). However,
some functions were controlled by multiple modules (Tables 2,

Fig. 1 Summary of the Fusarium graminearum gene regulatory network (GRN). (a) The abundance of target genes for all regulators is summarized in a
histogram and a density curve. x-axis, number of target genes; y-axis, density of regulators. (b) A stack bar plot comparing the RGO (function capture rate)
distribution for signal protein (SP) regulators in the inferred GRN and the random network obtained by a permutation test (see the Materials and Methods
section). RGO equals the ratio of functional terms shared by a regulator and its target genes (significantly enriched: P < 0.05) to the total functional terms of
the regulator (see the Materials and Methods section). Color scale: RGO ranges from 0 to 1.
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S6). For example, module A was found to function in the cell
cycle, remodeling of chromatin structure and cytoskeletal organi-
zation, and cell polarity. Modules D, E and F were found to reg-
ulate translation, transcription and DNA replication,
respectively. Module G was found to control cell differentiation
and stress responses. Although modules B, C and H were all
found to be involved in the regulation of cell detoxification pro-
cesses, they were enriched for different cellular processes. For
instance, module B was involved in secondary metabolism,
including lipid, fatty acid and isoprenoid metabolism; module C
was highly enriched for cytochrome P450-related detoxification
processes; and module H primarily regulated carbohydrate
metabolism and detoxification.

Such functional affiliation was also supported by the findings
that most regulators and target genes in modules B, C and H
were upregulated during plant infection (Fig. S5) and that the
gene expression profiles of modules B, C and H were distinct

from those of the other modules (Fig. S5; Table 2). For instance,
module A (cell cycle and cell development module) was preferen-
tially expressed during sexual reproduction stages, but module D
(translation module) was induced during conidial germination
processes (Fig. S5). To quantify the functional affiliation of each
module, we co-clustered the expressed profiles of the 120 top reg-
ulators and the expression profiles used for the F. graminearum
GRN inference employing a hierarchical clustering (HCL) algo-
rithm (Fig. S6), and observed distinct clustering patterns for the
regulatory modules (Fig. 4a), in agreement with their functional
annotations. The most significant affiliation was in module C,
where all regulators were found to be related to the disease phe-
notype (Fig. 4a) and were strongly induced during plant infection
(Fig. S5). In addition to module C, modules B (57% of regula-
tors) and H (70%) were also substantially correlated with disease
phenotypes. Of 22 candidate FS effectors reported previously
(Brown et al., 2012), 12, 12 and eight were found in modules B,

(a)

(b)

Fig. 2 Transcription factor (TF) regulators inferred in the Fusarium graminearum gene regulatory network (GRN) have exceptional functional or TF binding
site (TFBS) consistency with Saccharomyces cerevisiae homologs. (a) Pie charts summarizing the validation of 75 TF regulators inferred in the
F. graminearum GRN compared with S. cerevisiae homologs in terms of function and TFBS. Dotted lines and arrows represent a further breakdown of
functionally conserved TFs based on TFBS knowledge. (b) Summary of functionally conserved F. graminearum and S. cerevisiae TFs that share highly
similar TFBSs, suggested by motif MSs (matching scores). MS computation details are provided in the Materials and Methods section.
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C and H, respectively. Although all modules contain effector
genes, B and C have the highest ratio of effector genes per mod-
ule (Table S7). By contrast, modules A (80%), F (68%) and G
(85%) were major contributors to sexual development. Modules
D (70%) and E (68%) were primary contributors to the conidial
germination process (Fig. 4a). This distinctiveness of expression
profiles and functional affiliations among different modules indi-
cates that the F. graminearum GRN has clear modularity and that
each module is differentially expressed under certain biological
conditions.

The F. graminearum GRN reveals conserved vs species-
specific components

Novel traits, such as overcoming host resistance to establish infec-
tion, or utilizing different nutrient sources to support growth in a

changing environment, are important for the adaptation of an
organism and, in many cases, are gained through the acquisition
of new genes. The integration of these new genes into the regula-
tory network is crucial for their functionality. Based on a knowl-
edge of the structural and functional divergence of the
F. graminearum genome (Cuomo et al., 2007), we identified
9700 orthologous genes that were conserved among three Fusar-
ium sister species, F. graminearum, F. verticillioides and
F. oxysporum (Ma et al., 2010), as core genes. About 3600 genes
that lack orthologous sequences in the sister species were loosely
defined as F. graminearum specific (FS hereafter). These FS genes
were primarily localized to genomic regions that contained a high
density of single nucleotide polymorphisms (SNPs), and some of
these genes were found to encode pathogenicity-related effector
proteins (Kistler et al., 2013) and secondary metabolite gene clus-
ters (Zhao et al., 2014).

Table 1 Summary of conserved Fusarium graminearum (Fg) transcription factor (TF) regulators homologous to those in Saccharomyces cerevisiae (Sc)

Fg TF regulators Fg degenerate TFBS Sc homologs Sc TFBS evidence Consensus function annotation Motif matching score

FGSG_04666 CGGTGAR CHA4 No Cell cycle –1

FGSG_07097 CNCCAAN YOX1 Yes Cell cycle control 0.51
FGSG_07924 CGACNNC ZNF1 No Cell cycle, cell component biosynthesis,

cell differentiation, signal transduction
–

FGSG_07310 CCCTGNN STE12 Yes Cell cycle, cytokinesis, mating, cell type
differentiation, stress response

0.92

FGSG_09807 YGCGACN CEF1 No Cell cycle, RNA processing, mRNA splicing –
FGSG_08349 NGTSACG UME6 Yes Cell cycle, transcription, cell transport 0.57
FGSG_00385 CCNCNTC NHP6B Yes Chromatin remodeling, condensation –
FGSG_08719 NGCCNCA MYO1 No Cytoplasmic and nuclear protein degradation,

cell cycle, cytoskeleton structure
–

FGSG_07789 ATCGATA SKO1 Yes Disease, virulence, defense 0.53
FGSG_00477 GNCCCRC MIG2 Yes Fungal cell differentiation 1
FGSG_00318 CCCCGSA BAS1 Yes Metabolism, energy, transport 0.71
FGSG_00717 AAAANTT TIM10 No Mitochondria, mitochondria transport,

heat shock stress response
–

FGSG_09892 GATGNCN MPE1 No mRNA synthesis, transcriptional control –
FGSG_00153 ATAAGAT PUT3 Yes Nitrogen utilization 0.98
FGSG_04480 NNAAAAA EDS1 Yes Nonvesicular transport, stress response 1
FGSG_00800 CCNCCNC HAL9 Yes Osmotic and salt stress response, stress response 1
FGSG_13172 CNCNCCA PIP2 Yes Oxidation of fatty acids, cell cycle and DNA processing 1
FGSG_06516 GCKGACT STB5 Yes Oxygen and radical detoxification 1
FGSG_01172 CCGAGGY OAF1 Yes Peroxisome, fatty acid, mitochondria 1
FGSG_01411 NNCGCGT PFA4 No Protein modification, degradation, cell cycle regulation –
FGSG_06220 GNGGGGY SUI2 No Protein synthesis, translation, translation initiation –
FGSG_05012 AGCTNCN ARC1 No Protein synthesis, tRNA aminoacylation,

tRNA binding, stress response
–

FGSG_00052 CAYGTGC RSC30 Yes Regulation of ribosomal protein genes 0.83
FGSG_04554 YNATTGG DPS1 No RNA modification, rRNA processing –
FGSG_06168 RAAAAAN RSF2 Yes rRNA processing, protein synthesis, transcription 0.84
FGSG_11996 ACGTMAT ECM22 Yes Sterol metabolism 0.62
FGSG_00713 NCTCCCN STB5 Yes Stress response 0.61
FGSG_12798 TATAAGA PPR1 Yes Stress response 0.86
FGSG_02696 NACGTCA PPR1 Yes Stress response 0.84
FGSG_02787 GCGGRGN STB5 Yes Stress response 1
FGSG_04293 CNCCGMC CRZ1 Yes Stress response, calcium binding 0.97
FGSG_01638 GCGNCAN HAP1 Yes Transcription regulation 0.64
FGSG_00324 CNCCCNC SNT1 No Transcription, chromatin regulation, meiosis –
FGSG_05498 GANGCGN BUR6 No Transcription, chromosomal cycle –

TFBS, transcription factor binding site.
1Score not calculated.
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Based on this genome partition, we examined whether the reg-
ulatory modules identified in the F. graminearum GRN had an
enrichment of genes located on either genomic region. Interest-
ingly, FS genes are significantly enriched in the three pathogene-
sis-related modules, B (30%, P = 1.1e-3), C (52%, P = 1.3e-71)
and H (38.2%, P = 1.2e-17), but under-represented in all other
modules (Table 2). Such a biased distribution is reflected in both
regulators (Fig. 4b) and their target genes, and the most signifi-
cant enrichments are observed among FS target genes that are

regulated by FS regulators. For instance, 55% of FS target genes
in module B, 84% of FS target genes in module C and 73% of
FS target genes in module H are regulated by FS regulators.

To further understand the compartmentalization of regulation,
we ranked the top regulators based on their number of target
genes, and searched for the top 20 regulators for the conserved vs
species-specific genes, respectively. For the 9700 core genes, 19 of
the 20 top regulators were also encoded in the core regions, indi-
cating significant enrichment if assuming a random distribution

(a)

(b)

(c)

(d)

(e)

(g)

(h)

(f)

Fig. 3 The Fusarium graminearum gene regulatory network (GRN) consists of eight regulatory modules that are regulated under different biological states.
Visualization of the F. graminearum gene regulatory network, which is divided into eight modules (a–h). Only the regulator nodes are shown. Modules
(shaded circles) and their enclosed regulator nodes are colored. The size and label of the nodes are proportional to the number of target genes for each
regulator. Edges are nonweighted, simply showing inferred regulatory relationships. The functional annotation of each module represents the most
significantly enriched gene ontology terms among target genes within the module.
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(P = 0.02281). By contrast, only eight of the highest ranked 20
regulators for the 3600 FS genes were found to be core regulators,
and 12 were FS regulators (Fig. 5a), which were significantly
enriched (P = 0.002) (see the Materials and Methods section).
This over-representation of core and FS regulators for the core
and FS genomes, respectively, suggests that each genomic region
has a regulatory network that primarily employs regulators from
the same region. In addition, gene expression patterns for the top
20 regulators of the two genomic regions were also distinct. In
contrast with the top regulators in the core genome, those in the
FS genome were highly upregulated during plant infection stages,

further suggesting that the FS genome and its top regulators play
vital roles in fungal pathogenesis (Fig. 5a).

Furthermore, we found that if a regulator was F. graminearum
specific, its target genes were mostly F. graminearum specific, and
vice versa. We calculated the core and FS target gene ratios,
which represent the frequency of target genes from the core or FS
genome, respectively, in the total number of target genes per reg-
ulator. Density curves suggested that 96 core regulators (regula-
tors from the core genome) had low FS target gene ratios,
compared with 24 FS regulators (Fig. 5b). The FS gene ratio dis-
tributions for 24 FS regulators (mean, 0.41) and 96 core

(a) (b)

Fig. 4 Dissection of functional association in regulatory modules of Fusarium graminearum. (a) Bar graphs summarizing the number of regulators
belonging to the four major regulator clusters: Sexual, Disease, conidia_germ (conidia germination) and Sexual&Conidia germ, equivalent to the clusters
shown in Fig. 3. The regulators were counted for each module and plotted. Bar colors represent the four clusters. (b) Core genome and F. graminearum-
specific distribution of regulators for each regulatory module. FSR, F. graminearum-specific genome regulators; CoreR, core genome regulators.

Table 2 Summary of module statistics: the number of target genes and regulators in each module and the most significantly enriched functional terms in
target genes ranked by P values (low to high)

Module
No. target
genes

No. FS target genes
(percentage)1

FS enrichment
(P value)2

No.
regulators Significantly enriched biological processes3

A 2743 367 (13.4) Under (5.4e-38) 11 Cell cycle; cytoskeleton; budding; cell polarity;
chromosomal structure; G-protein-mediated cell
signaling

B 5066 1539 (30.4) Over (1.1e-3) 17 Detoxification; degradation of exogenous
compounds; nonvesicular cellular import;
secondary metabolism

C 3195 1658 (52) Over (1.3e-71) 12 Degradation of exogenous compounds;
detoxification involving cytochrome P450;
polysaccharide metabolism

D 3295 594 (18) Under (3.4e-18) 16 Protein synthesis; unfolded protein response;
mitochondrion; stress response

E 4440 561 (12.6) Under (3.8e-63) 21 Transcription; cellular transport; cytoskeleton; cell
cycle; mitochondrion; stress response

F 6807 1693 (24.8) Under (8.4e-3) 21 Metabolism; rRNA processing; Ori recognition
and priming complex formation; vitamin/
cofactor transport

G 4212 861 (20.4) Under (6.5e-12) 14 Stress response; fungal cell type differentiation;
ascospore development; cell wall; G-protein-
mediated signal transduction

H 3012 1151 (38.2) Over (1.2e-17) 8 Carbohydrate metabolism; detoxification by
degradation; aminosaccharide catabolism

1FS, Fusarium graminearum specific. Percentage, FS target gene ratio per module.
2FS enrichment: enrichment test (two-sided Fisher’s exact test) for FS target genes over total target genes per module, compared with total FS genes
(3600) against whole genome (13 300). Over, over-representation or enrichment (P < 0.05). Under, under-representation or lack of enrichment (P < 0.05).
3Significantly enriched biological processes using FUNCAT database (ranked by FUNCAT P-value in ascending order). Complete FUNCAT results for all modules
are available in Supporting Information Table S6.
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regulators (mean, 0.18) were significantly different (Student’s
t-test: P = 8.63e-05) (Fig. 5c). By contrast, target genes inferred
for core regulators were mostly situated in the core genome, and
the FS regulators had low core target gene ratios (Fig. S7). These
findings indicate that a compartmentalization of regulatory net-
works exists between the core and FS genomic regions.

A comparison of the F. graminearum GRN and FPPI reveals
subnetworks

Many regulatory interactions are effectively carried out by protein
complexes, which are essential molecular machineries for a vast
array of biological functions. FPPI, which interconnects 3750
proteins, was established previously (Zhao et al., 2009). By com-
paring the F. graminearum GRN with the reported FPPI, we

identified shared components that capture a total of 311 interac-
tions between 337 proteins. Although this shared network con-
tained only 337 proteins, 78 were predicted top regulators,
including 34 SP regulators and 44 TF regulators identified in this
study (Fig. S8; Table S8).

These shared interactions formed several major subnetworks,
and the top two were a ribosomal protein complex and a complex
that involved a subunit of CK2 (FGSG_00677). The ribosomal
protein complex contained 30 proteins that were all annotated as
ribosomal protein subunits and predicted to be part of module
D, which was found to be involved in translation. The subnet-
work centering on the regulator FGSG_00677 included a total of
20 proteins and was part of module E, which was found to con-
trol transcription and cell transport. FGSG_00677, an essential
F. graminearum kinase (Wang et al., 2011), was found to be

Fig. 5 The Fusarium graminearum gene regulatory network (GRN) has core genome- and F. graminearum-specific (FS) components. (a) Top 20 regulators
(in terms of having the most target genes) of target genes belonging to the core genome and FS genome. Purple and blue rectangles denote the core
genome and FS genome, respectively. The same colors were also used to shade the top 20 regulators, based on their location in genome compartments.
Heatmaps show the gene expression changes of the 40 regulators across three categories of biological conditions. Color scale represents log2-transformed
fold change from low (�4) to high (4). Green, downregulated; red, upregulated; black, no change. The core and FS genomes were defined based on a
comparative genome analysis between F. graminearum and three additional Fusarium species: F. oxysporum f. sp. lycopercisi, F. verticillioides and
F. solani. Core genes are shared by the four species. FS genes are unique to F. graminearum. (b) Kernel density curve of FS target gene ratio distributions
for 96 core and 24 FS regulators in the F. graminearum GRN. FS target gene ratios measure the proportion of FS genes amongst all target genes per
regulator. (c) Notch boxplots summarizing FS target gene ratio distributions for 96 core and 24 FS regulators, which are significantly different, with P < 0.05
(Student’s t-test). A horizontal black line across each box denotes the mean gene ratio.
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involved in cell cycle control, rRNA synthesis, and cell growth
and polarity (Table S4). Overall, we found that proteins involved
in the cell cycle and transcription were enriched in this subnet-
work. Consistent with the active involvement of protein synthe-
sis, DNA synthesis and transcription during fungal spore
germination (Osherov & May, 2001; Seong et al., 2008), both
modules D and E were strongly transcriptionally associated with
conidial germination (Fig. 4a).

The other shared component had a key regulator, adenylate
cyclase FAC1 (FGSG_01234), which controls the central signal-
ing cascade cyclic adenosine monophosphate–protein kinase A
(cAMP–PKA) pathway by producing the second messenger
cAMP (D’Souza & Heitman, 2001) to transmit extracellular
stimuli and govern cell responses (Hu et al., 2014; Guo et al.,
2016). This component was part of module A in the
F. graminearum GRN and was predicted to regulate the cell cycle
and cell development.

Previously, our comparative study of the cAMP–PKA pathway
in F. graminearum and in one of its sister species, F. verticillioides
(Guo et al., 2016), has revealed that this pathway has conserved
housekeeping functions, such as cell cycle regulation, primary
metabolism and stress response. In the F. graminearum GRN,
FAC1 was predicted to be one of the top regulators, and was
found to regulate 356 target genes that were enriched for func-
tions in small GTPase-mediated signaling, cell cycle regulation
and ascospore development (Table S4). Combining FPPI, our
GRN inference and the 1238 differentially expressed genes
(DEGs) identified in the Dfac1 mutant (Guo et al., 2016), we
identified a single edge that was supported by all three lines of
evidence (DEG–GRN–FPPI) (Fig. 6a,b). This single node
(FGSG_09908) encoded the regulatory subunit of PK (PKR),
and binding of cAMP to this subunit led to activation of CPK1.

Most edges were supported by both GRN and DEG (26 edges),
including FGSG_00800 (HAL9) and FGSG_08763 (SWI6).
Seven edges were supported by GRN and FPPI, including a RAS
GTPase (FGSG_05501) and protein phosphatases PP2, PP2c
and CDC25. Interestingly, 16 edges were supported by DEG
and FPPI, but not by GRN prediction, including a FAC1-
associated protein (FGSG_01923), the cAMP scavenger enzyme
PDE1 (FGSG_06633), G-protein b subunit FGB1 (FGSG_
09870) and a MAPK (FGSG_09612). This suggests that these
proteins may be part of a large protein complex involved in the
cAMP–PKA signaling pathway, but may not be directly regulated
by FAC1 (Fig. 6b).

Because this current model links all target genes with a subset
of regulators, we anticipate a relatively high false-positive rate in
target prediction. Therefore, it is not surprising that we identified
over 300 targets that only existed in GRN and lacked support
from either DEG or FPPI. These target genes had multiple regu-
lators in GRN; therefore, it is likely that their expression levels
may not be changed by blocking a single regulator. However, the
GRN-unique edges did capture cAMP signaling-related genes,
such as the G-protein a subunit (FGSG_05535) and c subunit
(FGSG_07235), consistent with the fact that G-protein signaling
regulates cAMP signaling. FAC1 is likely to be co-regulated with
these target genes.

Overall, the network analysis reported here captures many
edges that can be supported by both protein–protein interaction
and gene expression profiles. Combining these multiple layers of
evidence helps us to understand the hierarchical structure of the
FAC1 regulatory network in depth. This analysis provides a tem-
plate for functional validation of GRN, which could be achieved
using genetic and physical interaction data obtained in future
biological experiments.

(a) (b)

Fig. 6 Fusarium graminearum FAC1 regulatory subnetworks. (a) Venn diagram of network edges captured by the gene regulatory network (GRN),
F. graminearum protein–protein interaction network (FPPI) and differentially expressed genes (DEG) for the Δfac1mutant. (b) Fusarium graminearum

FAC1 (FGSG_01234, adenylate cyclase) regulatory subnetworks. Edges are nonweighted and depict regulatory relationships. For simplicity, prefixes
(FGSG_) of genes are omitted. Five clusters within the network are: GRN shared with DEG (DEG-GRN), GRN shared with FPPI (GRN-FPPI), FPPI shared
with DEG (DEG-FPPI), shared by all three (DEG-GRN-FPPI) and only in GRN (all are not shown). Colors of nodes (except FAC1, the regulator) are the same
as the clusters. Red labels beside the nodes are either gene names or functional annotations of genes.
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Discussion

The reconstruction of a GRN at the genomic level remains a
daunting task in any organism, particularly in higher eukaryotes.
In this study, we selected a filamentous fungus, F. graminearum,
for the network inference, because of its agricultural importance,
the wealth of available transcriptomic data and the existence of a
well-annotated genome. Furthermore, F. graminearum is one of
the most extensively researched plant-pathogenic fungi (Dean
et al., 2012). This first reconstructed GRN of a filamentous
ascomycete identified 120 top regulators that regulate different
sets of target genes, and provided a regulatory framework that
links every gene in the genome. Phenotypic association analysis
showed that some of the identified top regulators are critical for
fungal asexual and sexual growth, toxin production and virulence.
Interestingly, although the SP regulators investigated to date seem
to be crucial or indispensable, most TF regulator mutants have
similar phenotypes to the wild-type, with a few exceptions. This
may be attributed to different modes of action for these two dif-
ferent types of regulator. SPs, such as kinases, typically act
upstream of TFs and are therefore higher on the hierarchy of reg-
ulators, behaving as molecular switches. However, TFs often
require the cooperation of multiple transcriptional cofactors, as
this perhaps allows cells to cope with the loss of certain individual
TFs. Regardless, the importance of kinases vs TFs is not always
intuitive and, in many cases, requires further investigation.

One significant discovery of this relatively preliminary network
inference is the modularity of the network. Any biological func-
tion is accomplished by hundreds of proteins through indepen-
dent, but interconnected, subnetworks. Even though complete
separation may be impossible, certain subnetworks are more
interconnected than others. Our modularity analysis repro-
ducibly identified eight regulatory modules. Although this dis-
tinction between modules is clear, it is not uncommon to find
genes associated with more than one module, reflecting the com-
plexity of regulatory networks. The study of these modules will
provide valuable insight into the gene regulatory circuits that
control key fungal biological processes, and guide the functional
characterization of these regulators and target genes through
experimental approaches.

The other intriguing discovery of this study is the compart-
mentalization of the regulatory network. Previous studies have
divided the F. graminearum genome into conserved vs highly
variable genomic regions. Genes encoded within these regions are
enriched for species-specific genes and many of these encode
potential virulence factors that are induced during plant infection
(Cuomo et al., 2007; Zhao et al., 2014). In agreement with the
genomic division, these two regions are controlled by compart-
mentalized regulatory circuits in the predicted F. graminearum
GRN. However, there are strong connections between these two
regions and they clearly act as one unit. How F. graminearum
acquired these novel regulatory circuits during evolutionary pro-
cesses, how they were integrated with core circuits to form a
cohesive functional unit and, finally, how the two parts commu-
nicate to regulate diverse fungal biological processes remain to be
determined.

Our network inference also provides insight into the TF bind-
ing sites for the predicted TF regulators using a purely computa-
tional approach. Based on previously published results of an
in silico cis-element prediction for F. graminearum (Kumar et al.,
2010) and on homology with S. cerevisiae, we found strong con-
servation signals for 12 TFs (of 75 predicted top TF regulators)
and their corresponding TFBSs (matching score > 0.8) between
F. graminearum and S. cerevisiae, indicating functional conserva-
tion over > 400 million yr of evolutionary time. As expected, we
observed sequence divergence for the binding sites, even when
the TFs were conserved, as TF binding site turnover is commonly
observed during fungal species evolution, even between closely
related species (Gasch et al., 2004).

Overall, this network prediction illustrates the power of com-
putational biology and demonstrates the integration of social net-
work and life sciences. However, this current static network
model has its limitations. First, it does not consider the dynamic
nature of the network and lacks the fine resolution needed to
identify regulatory relationships under specific conditions. For
example, two well-characterized TFs, Tri6 and Tri10, which con-
trol the production of the mycotoxin trichothecene, are absent in
the top regulator list. This is probably a result of their specialized,
but nonessential, regulation of a set of genes that control sec-
ondary metabolism. Indeed, when we extended our search, both
Tri6 and Tri10 were identified among the top 500 regulators.
Second, the current algorithm is based on the consistent correla-
tion in expression levels of a regulator and target genes without
any consideration of post-transcriptional and post-translational
regulation events, which may have created noise in the predic-
tion. Third, certain genes that share similar patterns of expression
without actual regulatory relationships may have been assigned
regulatory relationships as false positives. As expression-based
modeling identifies regulators that are active (up- or downregu-
lated) under most, if not all conditions, candidate regulators lack-
ing significant expression changes are unlikely to be identified.
Despite these limitations, we are confident of the overall accuracy
of this network model, which has already revealed exciting and
biologically meaningful insights into the gene regulation of this
filamentous fungus. By increasing the number of datasets
obtained under more diverse conditions, the network structure
and topology can be further refined with improved resolution.
The identification of the components and dynamics of the cell
regulatory network and the pinpointing of specific regulators that
govern fungal pathogenesis will offer potential novel strategies to
control FHB, one of the most devastating diseases of wheat.
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Fig. S1 Scatterplot matrix of three biological replicates and asso-
ciated Pearson correlation coefficients (r) for each condition/bio-
logical state transcriptomically profiled in this study using the
Affymetrix Fungal Multigenome ExonChip.

Fig. S2 Bayesian network score distribution for the top 300 regu-
lators in the Fusarium graminearum gene regulatory network
(GRN).

Fig. S3 Visualization of the Fusarium graminearum gene regula-
tory network (GRN) featuring the top 120 regulators, including
transcription factors (TFs) and signal proteins (SPs), represented
by red and green nodes, respectively.
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Fig. S4 Gene–phenotype networks depicting the association of
known phenotypes (red nodes) with inferred signal protein (SP)
(blue nodes) and transcription factor (TF) (green nodes) regula-
tors.

Fig. S5 Regulatory modules are differentially regulated in
response to various biological conditions.
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ditions (rows) and 120 regulators (columns).
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